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EFFECT OF RELAXATION AND RETARDATION TIME
ON PERISTALTIC TRANSPORT OF THE
OLDROYDIAN VISCOELASTIC FLUID

Mohamed H. Haroun UDC 532.536

The influence of relaxation and retardation time on peristaltic transport of an incompressible Oldroy-
dian viscoelastic fluid by means of an infinite train of sinusoidal waves traveling along the walls of
a two-dimensional flexible channel is investigated. A perturbation solution is obtained for the case
in which the amplitude ratio (wave amplitude to channel half-width) is small. The results show that
the values of the mean axial velocity of an Oldroydian viscoelastic fluid is smaller than that for a
Newtonian fluid. The reflux phenomena are discussed. It is found that the critical reflux pressure
gradient decreases with increasing retardation time and increases with increasing relaration time.
Numerical results are reported for different values of the physical parameters of interest.
Key words: Oldroydian fluid, peristaltic motion.

Introduction. The word “peristalsis” stems from the Greek word “peristalikos,” which means clasping and
compressing. Peristaltic transport of fluids occurs in the esophagus, the ureter, and the lower intestine. In addition,
peristaltic pumping occurs in many practical applications involving biomechanical systems, such as roller and
finger pumps. A mathematical analysis of peristaltic pumping in a two-dimensional formulation was presented by
Latham [1]. Fung and Yih [2] investigated a perturbation solution of a two-dimensional case in which the amplitude
ratio (wave amplitude to channel half-width) was small. Srivastava and Srivastava [3] studied the blood flow. El-
Shehawey and Mekheimer [4] examined the effects of couple-stresses in peristaltic transport of fluid. Peristaltic
transport of a particle—fluid suspension was considered in [5, 6]. Antanovskii and Ramkissoon [7] studied peristaltic
transport of a compressible viscous fluid in a finite pipe. Carew and Pedley [8] investigated periodic activation
waves in an infinite tube.

Most theoretical investigations were performed for Newtonian fluids, although it is known that most phys-
iological fluids behave like non-Newtonian fluids. In this aspect, there is only limited information on transport of
non-Newtonian fluids. The main reason is that additional nonlinear terms appear in equations of motion, rendering
the problem more difficult to solve. Another reason is that a universal non-Newtonian constitutive relation that
can be used for all fluids and flows is not available. The earliest studies date back to Raju and Devanathan [9, 10]
who considered the motion of an inelastic power-law fluid and of a special differential-type viscoelastic fluid of
grade two through a tube with sinusoidal small-amplitude corrugation in the axial direction. Bohme and Friedrich
[11] investigated peristaltic flows of viscoelastic fluids under the assumptions that the relevant Reynolds number is
small enough to neglect inertia forces and that the ratio of the wave length and the channel height is large, which
implies that the pressure is constant over the cross section. Hayat et al. [12] investigated periodic unsteady flows
of a non-Newtonian fluid. Misra and Pandey [13] studied a peristaltic flow of blood in small vessels by developing
a mathematical model in which blood was treated as a two-layer fluid. Mernone et al. [14] considered a peristaltic
flow of rheologically complex physiological fluids modeled by a non-Newtonian (Casson) fluid in a two-dimensional
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Fig. 1. Geometry of the problem.

channel. Hayat et al. [15] studied the effect of a third-order fluid on peristaltic transport in a circular cylindrical
tube under the assumption that the wavelength of peristaltic waves is large compared to the mean tube radius.
Hayat et al. [16] also considered a two-dimensional flow of a Johnson-Segalman fluid in a planar channel whose
walls are transversely displaced by an infinite harmonic traveling wave of large wavelength.

The present paper considers peristaltic transport of an Oldroydian viscoelastic fluid with an arbitrary value
of the Reynolds number. Such a work seems to be important and useful because attention has been hardly given to
the Oldroydian fluid. Moreover, some non-Newtonian models take into account normal stress differences and shear
thinning /thickening effects but lack other features, such as stress relaxation. In our analysis, we assume that the
velocity components and the pressure gradient can be expanded in a regular perturbation series of the amplitude
ratio. Nonlinearity of the equations of motion is taken into account. The combined effects of the relaxation time,
retardation time, and material parameters of the fluid are examined. As the viscoelastic parameters tend to zero,
the analytical results reduce to the well-known case of a Newtonian fluid and agree with the data obtained by Fung
and Yih [2].

Basic Equations and Formulation of the Problem. We consider a two-dimensional channel of uniform
width 2d filled by an incompressible Oldroydian viscoelastic fluid. We assume that an infinite wave train travels
with a velocity ¢ along the walls (Fig. 1). According to Oldroyd [17], the constitutive equations for the Oldroyd-B
fluid are

¥ =—-PI+S; (1)

dS dA
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where X is the Cauchy stress tensor, —PI is the spherical part of stress due to incompressibility, d/dt is the material
derivative with respect to time, p is the viscosity, and A\; and Ay are material time constants referred to as the
relaxation and retardation time, respectively. It is assumed that Ay > Ao > 0. The tensors L and A; are defined as

follows:
L=gradV, Ay =L+L" (3)
It should be noted that this model includes a viscous Navier—Stokes fluid as a special case for A\; = Ao = 0.

Further, if Ay = 0, then it reduces to a Maxwellian fluid.
The equations of continuity and momentum for an incompressible fluid flow are given by

divV = 0; (4)
dv



(p is the density). The velocity field for an unsteady two-dimensional flow can be written as

V = (u(z,y,1),v(z,y,1),0). (6)
From Egs. (1)—(5) and (6), we obtain
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Let the vertical displacements of the upper and lower walls be 1 and —n, respectively. The geometry of the
wall surface is defined as
n=acos(2m(z — ct)/N), (12)
where a is the amplitude, A is the wavelength, and c is the wave velocity. The horizontal displacement is assumed
to be zero. Hence, the boundary conditions for the fluid are
0
y=dd+tn u=0, v:f%. (13)

We introduce the following dimensionless variables and parameters: z* = z/d, y* = y/d, u* = u/c, v* = v/e,
t* = ct/d, p* = p/(pc?), n* = n/d, Si, = dSsz/(uc), Sk, = dSay/(uc), S, = dSyy/(uc), amplitude ratio € = a/d,
wavenumber « = 27d/\, Reynolds number Re = cdp/ 1, and Weissenberg numbers wy = cA;/d and wy = cha/d.
In terms of the stream function ¢ (x,y,t), after eliminating P and dropping the asterisks over the symbols,
Egs. (7)—(13) become
0

1
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Szz + w1 [Szz,t + wySzz,z - ¢1Srr,y - 2¢zySzz - 2wyysry]
Sry + w1 [Sry,t + wySzy,z - ¢1Sry,y - 1pyysyy + wrrszz]

0 0 o
::2UQ¢%yv2¢-+(14-u@(gg-+¢@,5;-—¢15§))(¢yy—»wwg; (16)
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Syy + w1[Syyt + VySyy.e — VaSyyy + 202aSey + 2thaySyy]
= —2[%@/ + w2 W’ryt + ¢y¢zzy - ¢z¢zyy + 21/%, — Yaa (wyy - wm)]]v (17)
n = ecos (a(xz —t));
y=x1+n: 1y =0, Yy = Faesin (a(x — t)), (18)
where V2 denotes the Laplacian operator and the subscripts indicate partial differentiation.

Method of Solution. We obtain the solution for the stream function as a power series in terms of the
small parameter € by expanding ¢, Szz, Szy, Syy, and dp/dz in the following form:

Y=o+ e +e%Pa + ... (19)

dp\ _ (Op dp 2(Op ,
(833)_(83:)0+6(8a:)1+8 (83:)2—’_”" (20)
Sww = Szz0 + 5Sww1 + 525112 +... (21)
Sy = Seyo + €Suey1 +2Suya + ... ; (22)
Syy = Syyo + ESyyl + EQSny 4+ ... (23)

The first term on the right side in Eq. (20) corresponds to the imposed pressure gradient associated with the
primary flow, and the other terms correspond to peristaltic motion. Substituting Eqgs. (19)—(23) into Egs. (14)—(17)
and (18) and collecting terms of like powers of e, we obtain three sets of coupled differential equations with their
corresponding boundary conditions in €g, €1, and €2. The first set of differential equations in €(, subject to a steady
parallel flow and transverse symmetry assumption for a constant pressure gradient in the x direction, yields

3

w=rli-5] K=-5(5), @

The last solution (24) agrees with the results of Fung and Yih [2], which means that the flow at this order is
independent of viscoelastic parameters. The second and third sets of differential equations in ¥, and 12 with their
corresponding boundary conditions reduce to the following relations:

(@, y,1) = (p1(y) D 7 (y) e 1) 25 (25)
Sea1(2,y,) = (p2(y) €70 405 (y) e /2; (26)
Sey1(z,y,1) = (p3(y) 7 5 (y) e /2; (27)
Syt (,9,t) = (pa(y) e~ 4 (y) e 1) /2; (28)

ba(x,y,t) = (p20(y) + 22(y) €T 405, (y) e 2771 /2; (29)
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(the asterisk denotes complex conjugation). Substituting Egs. (25)—(32) into the differential equations and their
corresponding boundary conditions in 17 and s, we obtain three sets of coupled linear differential equations with
their corresponding boundary conditions. These equations are sufficient to determine the solution up to the second
order in €. These equations, however, are fourth-order ordinary differential equations with variable coefficients, the
boundary conditions are not all homogeneous, and the problem is not an eigenvalue problem. Nevertheless, we can
restrict our investigation to the case of free pumping. Physically, this means that the fluid is stationary if there are
no peristaltic waves. In this case, we put (dp/dx)o = 0, which means that K = 0; under this assumption, we obtain

845



iaR(¢] — o’p1) = ia) — iaph — ol — a’ps;
(1 —icqwy )2 = 2ia(l — iaws)@l;
(1 —iow; )p3 — o (1 + iaws)pr = (1 — icaws)};

(1 —iaw)ps = —2ia(l — icqws) ¢,

where
e1(£1) =1, (1) =0
a,nd 1 . x I x/1\/
P40 = ZO‘R(%% — P11 ) /2§
P30 = —iow: (P2 — e195) /2 — 2wa(a® (10} + D1 @T) + 1" + 3Pl p})
—wi (301" + @307) + iawr (P15 — p201');
P10 = w1 (@704 + 01" pa) /24 Pwi (195 + Pa10}) /2 + i wa (010 — 1 eT) + P
—iawa (197" — 91eY) /2 —iowi (e30] — ©193) /2;
@50 = iow (pap} — 1p1)/2 + Pwa (19} + 01¢)) + aPwi (P15 — ©Fes)
— 4awal ) — QPwa(p1p}” + @il + 207 010}),
where
@ao(£1) = T (£1) + ¢1"(£1))/2,

and

daR(phy — 40”p22) = AR @ — aRp19]" — daghs + 2ipl, + 8ia’ o + dapss,

(1 — 2iaw )pss = iaws (p10h + P p2)/2 — w13l + PwrE? — wap)? + dic(1 — 2iaws ),
(1 — 2icqw; )pas = —iaws (1] — 30107 /2 — iangtpltpll — dia(ia + 2@2w2)<p22
+ iowr (9195 — ©193)/2 + w1 (P s + P p12)/2 + (1 — 2iaws)h,,
(1 — 2w )pss = ioaw; (P10 — 30104)/2 + Qw1103 — diagh, + 3 w2
— 202 wa 1Y — atwa? — 8aPwaph,,

where

poo(E1) = FRL(ED/4, (1) = Foi (£1)/2.
The prime here denotes the derivative with respect to y. The solutions of Egs. (33)—(36) are
¢1(y) = Avsinh (ay) + Bisinh (By),  ¢2(y) = Az cosh (ay) + Bz cosh (By),

¢3(y) = Az sinh (ay) + Bz sinh (By), ¢4(y) = —Az cosh (ay) — Ba cosh (By),

where

Ay = —fcosh /(acosh asinh § — Bcosh Fsinh a), B; = acosh a/(acosh asinh 3 — 3 cosh fsinh «),

A2 = 2i042FA1, Bg = QiQﬁFBl,
A32a°T A, Bz =T(a® + %)By,

% =a? —iaR/T, ['= (14 ®wiws +ia(w; —w2))/(1 + oPwi).
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Next, in the expansion of 12, we need only concern ourselves with the terms ¢4,(y), because our aim is to determine
the mean flow only. Thus, the differential equations (37)—(40) subject to the boundary condition (41) yield the
expression

@ho(y) = F(y) — F(1) + D — C1(1 — ¢*),
where
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Thus, we see that one constant Cj remains arbitrary in the solution. Substituting Egs. (19)-(23) into (7)
under the assumption that K = 0, we find that

op
G = R(%)z'
This also means that the time-averaged velocity can be written as
2 2 =
_ _ 5_ / _ E_ o _ @ 2
a(y) = 5 ) = 5 (F) - F(O) + D= R(52) (1 =4?). (42)

Note, if we put the Weissenberg numbers w; and wsy equal to zero, then the results of the problem reduce to the
solution found in [2] for a Newtonian fluid.

Numerical Results and Discussion. The problem of peristaltic motion of an Oldroydian viscoelastic fluid
is controlled by viscoelastic parameters, wavenumber, Reynolds number, and second-order time-averaged pressure
gradient. In this Section, the mean velocity at the channel boundaries, mean-velocity perturbation function, time-
averaged mean axial-velocity distribution, and reflux are calculated for different values of these parameters in
the free-pumping case. Numerical calculations based on Eq. (42) show that the mean axial velocity of the fluid
due to peristaltic motion is dominated by the constant D, parabolic term —R(9p/0x)2(1 — y?), and perturbation
term F(y) — F(1). The constant D, which initially arose from the non-slip condition of the axial velocity on the
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Fig. 2. Effect of the viscoelastic parameter w; on the dependence D(«) for we = 0.1 and R = 100.

Fig. 3. Effect of the viscoelastic parameter w2 on the dependence D(«) for wi = 0.8 and R = 50.
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Fig. 4. Effect of the viscoelastic parameter w1 on the mean-velocity perturbation function G(y) for
wz = 0.1, w2 = 0.01, and R = 100.

Fig. 5. Effect of the viscoelastic parameter ws on the mean-velocity perturbation function G(y) for
we = 0.1, w1 = 0.5, and R = 50.

wall, is due to the value of ¢}, at the boundary and is related to the mean velocity at the channel boundaries
as u(E) = e2phy(£)/2 = €2D/2. The parabolic term —R(9p/dz)2(1 — y?) is negative for a positive pressure
gradient and vice versa. The perturbation term F(y) — F(1) is negative and proportional to a?R%. We define the
mean-velocity perturbation function G(y), as in [2], in the form

G(y) = —200(F(y) — F(1))/(a”R?),
which yields
i) = = (D r(2E) 1 -y - TR 43
a(y) = 5 (D - R(52) (1 -y - 5o GW))- (43)
Figures 2 and 3 show the dependence D(«) for different values of the Weissenberg numbers w; and ws.
The numerical results indicate that D decreases with increasing w; and increases with increasing ws and «. The

dependence G(y) for different values of w; and wy is plotted in Figs. 4 and 5. The results reveal that G decreases
with increasing w; and increases with increasing wy. The flow reflux will occur whenever there is a negative mean
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Fig. 6. Effect of the viscoelastic parameter w1 on variation of the critical reflux pressure gradient
versus the wavenumber « for we = 0.001 and R = 10.

Fig. 7. Effect of the viscoelastic parameter w2 on variation of the critical reflux pressure gradient
versus the wavenumber a for w; = 0.08 and R = 10.
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Fig. 8. Effect of the viscoelastic parameter w; on the mean-velocity distribution and reflux for
(0p/0x)2 = 0.04, w2 = 0.01, « = 0.2, ¢ = 0.15, and R = 75.

Fig. 9. Effect of the viscoelastic parameter ws on the mean-flow distribution and reflux for
(0p/0x)2 = 0.04, w1 = 0.8, « = 0.2, ¢ = 0.15, and R = 75.
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velocity in the flow field. Since @(+) = £2D/2, and D is always positive in the pure peristalsis case, the reflux will
never occur at the boundaries. Furthermore, it follows from Eq. (43) that, if we put @(y) = 0 on the centerline
y = 0, then the critical reflux condition is

op 1 a’R?
(50)ae = (P~ T GO,

The reflux occurs when (0p/0x)s > (0p/0x)a,cr- Figures 6 and 7 show the variation of (9p/0x)2 r versus «
for different values of wy and wy. The calculation results reveal that (0p/dx)z,; decreases with increasing we and
increases with increasing w;. The zeroth-order solution is found to be identical to that for the Newtonian behavior.
At this order, the Weissenberg numbers only contribute to S;.o9. Higher-order solutions were studied to reveal
the effect of the non-Newtonian behavior on peristaltic waves. The results indicate that the second-order solution
depends strongly on the Weissenberg numbers. The effect of the Weissenberg numbers w; and ws on the mean
velocity and reflux is displayed in Figs. 8 and 9. We see that the reflux velocity increases with increasing w; and
decreases with increasing wo.

REFERENCES

1. T. W. Latham, “Fluid motion in a peristaltic pump,” M. S. Thesis, Mass. Inst. Technol., Cambridge (1966).
2. Y. C. Fung and C. S. Yih, “Peristaltic transport,” Trans. ASME, J. Appl. Mech., 35, 669-675 (1968).
3. L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of blood: Casson model II,” J. Biomech., 17,
821-829 (1984).
4. E. F. El-Shehawey and K. S. Mekheimer, “Couple-stresses in peristaltic transport of fluids,” J. Phys., D: Appl.
Phys., 27, 1163-1170 (1994).
5. L. M. Srivastava and V. P. Srivastava, “Peristaltic transport of a particle-fluid suspension,” J. Biomech. Eng.,
111, 157-165 (1989).
6. M. A. Saxena and V. P. Srivastava, “Particulate suspension flow induced by sinusoidal peristaltic waves,” Jpn.
J. Appl. Phys., 36, 385 (1997).
7. L. K. Antanovskii and H. Ramkissoon, “Long-wave peristaltic transport of a compressible viscous fluid in a
finite pipe subject to a time-dependent pressure drop,” J. Fluid Dyn. Res., 19, 115-123 (1997).
8. E. O. Carew and T. J. Pedley, “An active membrane model for peristaltic pumping. Part 1. Periodic activation
waves in an infinite tube,” Trans. ASME, J. Biomech. Eng., 119, 66-76 (1997).
9. K. K. Raju and R. Devanathan, “Peristaltic motion of a non-Newtonian fluid,” Rheol. Acta, 11, 170-178 (1972).
10. K. K. Raju and R. Devanathan, “Peristaltic motion of a non-Newtonian fluid II: Visco-elastic fluid,” Rheol.
Acta, 13, 944-948 (1974).
11. G. Bohme and R. Friedrich, “Peristaltic flow of viscoelastic liquids,” J. Fluid Mech., 128, 109-122 (1983).
12. T. Hayat, S. Asghar, and A. M. Siddiqui, “Periodic unsteady flows of a non-Newtonian fluid,” Acta Mech., 131,
169 (1998).
13. J. C. Misra and S. K. Pandey, “Peristaltic transport of blood in small vessels: Study of a mathematical model,”
Comput. Math. Appl., 43, 1183-1193 (2002).
14. A. V. Mernone, S. K. Lucas, and J. N. Mazumdar, “A mathematical study of peristaltic transport of a Casson
fluid,” Math. Comput. Modelling, 35, 895-912 (2002).
15. T. Hayat, Y. Wang, A. M. Siddiqui, et al., “Peristaltic transport of a third-order fluid in a circular cylindrical
tube,” Math. Models Methods Appl. Sci., 12, 1691-1706 (2002).
16. T. Hayat, Y. Wang, A. M. Siddiqui, et al., “Peristaltic transport of a Johnson—Segalman fluid in a planar
channel,” Math. Probl. Eng., 1, 1-23 (2003).
17. J. G. Oldroyd, “On the formulation of rheological equations of state,” Proc. Roy. Soc. London Ser. A, 200,
523-541 (1950).

850




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


